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We test a new statistical theory of organized structures in two-dimensional 
turbulence by direct numerical stimulations of the Navier-Stokes equations, using a 
pseudo-spectral method. We apply the theory to the final equilibrium state of a shear 
layer evolving from a band of uniform vorticity : a relationship between vorticity and 
stream function is predicted by maximizing an entropy with the constraints due the 
constants of the motion. A partial differential equation for the stream function is 
then obtained. In the particular case of a very thin initial vorticity band, the Stuart’s 
vortices appear to be a family of solutions for this equation. In  more general cases 
we do not solve the equation, but we test the theory by inspecting the relationship 
between stream function and vorticity in the final equilibrium state of the numerical 
computation. An excellent agreement is obtained in regions with strong vorticity 
mixing. However, local equilibrium is obtained before a complete mixing can occur 
in the whole fluid domain. 

1. Introduction 
A statistical theory for the emergence of organized structures in two-dimensional 

turbulence has been proposed by Robert (1989,1990,1991) and discussed in Robert & 
Sommeria (1991). The aim of the present paper is to apply this theory to a simple case 
and test it by direct numerical simulations. The theory involves the Euler equation 
and, in its simplest form, applies to an initial condition with piecewise uniform 
vorticity. The boundaries of the patches become in general more and more intricate 
as time goes on, but the area of each vorticity patch is conserved, as well as the total 
kinetic energy of the system. The goal of the theory is to predict the final state, at  
the end of the cascade processes. 

Since the vorticity contours become so intricate, we are not really interested in the 
exact vorticity field. Indeed the velocity field results from an integration of the 
vorticity, so that it does not depend on the fine-scale fluctuations of the vorticity : it 
depends only on its local average. In fact, to exploit all the information given by the 
constants of the motion, we are led to consider a macroscopic description of the 
system by introducing the local probability distribution of the different vorticity 
levels in a small neighbourhood. Therefore we define a macroscopic state as a field of 
these local probabilities, while an exact vorticity field is called here a microscopic 
state. We consider all the vorticity fields with the same constants of the motion as 
the initial condition. It was proved by Robert (1989) that ‘most’ of these possible 
microscopic states are very ‘close ’ to a well-defined macroscopic state. This state is 
obtained by maximizing an entropy functional, with the constraints due to all the 
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constants of the motion. The theory predicts a well-defined relationship between the 
locally averaged vorticity and the stream function. Therefore this averaged vorticity 
field is a steady solution of the Euler equation. In the presence of a very small 
viscosity, the local vorticity fluctuations are smoothed out, and this locally averaged 
vorticity becomes the actual steady flow which emerges from turbulence. 

A direct numerical test of the theory, using Euler equations, would be limited by 
the production of vorticity structures at increasing fine scales, which become rapidly 
out of reach of any numerical scheme. Therefore, with any numerical method, a 
subgrid-scale modelling is needed to compute the long- time behaviour. Such 
modelling should be able to smear out correctly the local vorticity fluctuations, while 
conserving the total energy and circulation. In the absence of any known subgrid- 
scale modelling with these properties, we choose an ordinary viscosity, therefore 
solving the Navier-Stokes equations. The Laplacian term locally averages vorticity, 
and the total energy decays only moderately when viscosity is small. We test the 
theory in the case of a shear layer, in which the initial vorticity is uniform and limited 
to a band (with smoothed edges). The development of the shear instability and 
merging processes strongly mix the vorticity with the surrounding irrotational fluid. 
(This has been described in great detail by Corcos & Sherman 1984). Then a final 
vortex is formed, which is nearly a steady solution of the Euler equation (very slowly 
diffusing by viscosity). Since the boundary conditions are periodic in the direction of 
the initial band, this final vortex is in fact a periodic chain of vortices. This geometry 
is chosen for its simplicity, but it is similar to an annular geometry. Such annular 
shears are found in laboratory experiments (for instance Sommeria, Meyers & 
Swinney 1988; Antipov et al. 1986; Rabaud & Couder 1983) and in the atmosphere 
of giant planets like Jupiter. 

The theory is applied to a shear layer in $2, and the relationship between vorticity 
and stream function is predicted for the final vortex. This partial differential 
equation can be solved explicitly in the particular case of a wide domain, and yields 
the family of vortex chains found by Stuart (1967). We compare the theoretical 
relationship with the numerical results in $3. 

2. Statistical equilibrium states 
2.1. Equatiolzs and constants of the motion 

We study the particular case of a 2x-periodic fluid motion in the x-variable confined 
to a strip -L  < y < + L .  We denote the fluid domain B = ]0,2x[ XI-L, +L[ .  Then 
the velocity u(t, x, y) = (u,  w) and normal vorticity component w are 2x-periodic in the 
x-variable and satisfy 

wt + v- (wu) = 0, w ( 0 ,  x) = wo(x) ,  

v x u = w ,  (2) 
V u = 0, v = 0 at the boundaries y = L 

One can check that the functionals 

are constants of the motion. The functionals If are constructed from any continuous 
function f of the vorticity ; taking f ( w )  = wn, we get the conservation of the moment 

r, = J wndx. 
R 
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r, is the total circulation around the fluid domain, while lr is called the enstrophy. 
The kinetic energy E,  and the integrals If are conserved in the general case of any 
domain 0. By contrast the conservation of the physical momentum P and the 
vorticity momentum M are specific for our channel geometry. The conservation of P 
results from the absence of global pressure forces in the x-direction, due to the 
periodic boundary conditions (and can be derived from the Euler equations written 
in terms of velocity and pressure). The momentum M differs from the physical 
momentum P by a boundary term (which appears in an integration by parts) : 

2. 

M = P - L  (u(z, -L)+u(z ,  + L ) )  dx. (3) 1:' 
The conservation of 2M can be derived directly from (1) and (2) as follows : 

yw,dx = -[*yV.(wu)dx = - 

The first term is equal to zero because of the periodic boundary conditions, and the 
second term can be rearranged after integration by parts, taking into account that 
v = 0 at y = & L ;  then 

but 0 = a,v-aayu from which 

- dM = ~ Q a , ( ~ 2 ) d x -  
dt 

The periodicity condition implies that the first term is equal to zero, and after 
integration by parts the second term gives 

dt= dM s, ua,udx = -j),($')dr = 0, 

where we have used the relation of incompressibility. 
To apply the theory, we need to describe the motion in terms of vorticity. 

However, u is only defined up to an additive constant on the component u by (2). But 
u is uniquely determined from the vorticity field if we fix the value of the momentum 
P. When the initial vorticity field w,, and momentum P are given, then the vorticity 
equations (1) and (2) determine the dynamics of the system. 

We now introduce the stream function $ by 

u = w / a y ,  $=Pp/4z on y =  +L,  $= -P/4z on y =  - L ;  

v = -a$-/ax, $ is 2zx-periodic. 

A straightforward computation gives 

P I 2 J *  8x 
E,  = $  U2dX = 1 $wdx+-((P-N); 

therefore the conservation of the kinetic energy is equivalent to the conservation of 
the functional 
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2.2. The state of maximum entropy 

We consider an initial condition with one or several vortex patches with a single 
uniform vorticity level w = a surrounded by irrotational fluid. In the absence of 
viscosity the flow will contain the cwo levels of vorticity a and 0 forever, but in 
general the boundaries of the patches will become more and more intricate. Therefore 
a complete description of the system will require increasingly more information, so 
that such a microscopic description will become more and more difficult and useless. 
We define then the probability e(x) of finding the vorticity level a in a small 
neighbourhood of a location x. The probability of finding the vorticity 0 will be the 
complementary 1 -e(x). The probability field e(x) represents our macrostate. In  the 
presence of a very small viscosity, we can expect that  the inertial filamentation 
process is preserved, but the resulting fine-scale vorticity structures are then 
smoothed out, leading to the locally averaged vorticity field is(x) = ae(x). In  our 
particular case of an initial condition with a single non-zero vorticity level a, the local 
probability distribution is completely determined by its average, but this would not 
be true in more general cases. 

As discussed in Robert & Sommeria (1991), the system is most likely to reach a 
neighbourhood of the macroscopic state which maximizes the entropy 

S = -  Jb [ eloge+ (1 - e) log (1 -e)] d x  (4) 

with the constraints due to the constants of the motion. We write these constraints 
in terms of the locally averaged vorticity O(x) = ae(x) and the associated stream 
function Y, defined by - V 2 Y  = (with the above boundary conditions). 

We do not have to take into account the fourth constant of the motion P,  as it is now 
fixed in order to define the dynamical system. In this particular case of a single non- 
zero vorticity level a ,  the conservation of the functionals If(@) reduces to the 
conservation of the total area of the patches with level w = a, which is also the 
circulation I'l around the domain SZ,  divided by a. 

The variational problem is solved by introducing the Lagrange multipliers 01, B, y 
corresponding to the three independent constraints, so that the first variations 
satisfy, for any small variation Se (x) of the probability field e(x) : 

SS-aSrl-/38E-ySM = 0. 

These variations must be expressed in terms of the variation Se(x). To express the 
boundary term, SE can be rearranged by part integration, using (3): 

SE = ~ ( J Q S Y a d x + ~ Q S s Y d x )  = JnSsYdx+- P S(P-M) 
S R  L . 

Since SP = 0, the boundary term reduces to - (P/Sn)(SM/L) .  The variations SS, Srl  
and SM are obtained by straightforward differentiation, which leads to 

JQ[log(&)+aa+BaY+ ( y-- EL) ay ] Se(x)dx = 0 

for any small variation Se(x). Now e(x) and Y ( x )  denote the optimal fields. For this 
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relation to be satisfied for any variation Se(x), the integrand must vanish, which 
leads to 

Using the relation - V2 Y = ae, we obtain a differential equation for the macroscopic 
stream function Y :  

It is convenient to make the change of stream function q5 = Y+(y‘ /P)y which 
corresponds to a change of reference frame, the new frame translating with uniform 
speed along the x-axis. In  this frame of reference, the vorticity is a function of the 
stream function, so that the locally averaged vorticity field appears to be a steady 
solution of the Euler equations. In the presence of a very small viscosity, we expect 
that the fine-scale fluctuations will be smeared out, so that this steady flow becomes 
the actual final state of the system. 

Denoting 0 = exp (aa) # / a ,  we get 

where 

A = -a2pexp (-era), ,u = exp (-aa), B = 

Notice that the second term of (7) can also be written as an hyperbolic tangent of 
a linear function of 8. Particularly interesting is the case B = 0 which corresponds to 
a zero mean velocity in the moving frame. This case has been mathematically studied 
by T. Dumont & Shatzman (1991, paper in preparation). It has been shown that 
there is some value ,u* such that for ,u < ,u*, there is a critical value A,(p) of the 
parameter h satisfying : 

for h < A,, the problem has a unique solution which depends only on the y 
variable ; 

for h = A , ,  a bifurcation occurs with breaking of the x invariance and the 
appearance of two branches of solutions. This case corresponds to the formation of 
an organized structure. 

The conditions (6) or (7) ensures the vanishing of the first-order variation, which 
defines a critical point; it is only a necessary condition for a distribution e(x) to be 
a maximum of entropy. To prove that the critical point is a local maximum of 
entropy, it is sufficient to check in addition that the second-order variation of the 
functional (the ‘free energy ’) 

J[e]  = A!j“e]-ar1[e]-/3E[e]-yM[e] 

is negative for any small variation Se(x) which does not change the constraints a t  first 
order. A Taylor expansion yields the second-order variation (62M and S2Y; vanish) 

The integral of the second term can be written as Sn (V SY)2 dx, which is positive. 
Therefore when /3 is positive, S2J is always negative, so that the critical point gives 
a local maximum of the entropy. For /3 < 0, S2J can be majored by introducing the 
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first eigenvalue of the Laplacian in the domain 0, K~ = x 2 / 4 L 2  (with boundary 
condition 0 a t  y = f L  and 2x x-periodicity). We then use the well-known inequality 

SRSY'S.i(dx < - (6@ddx, 
K1 ' S  R 

which implies, taking into account that e and 1 - e are smaller than 1,  

Therefore the free energy still has a unique maximum when /3 > - K J ~ .  This 
condition will be refined in the particular case studied in the next sub-section. 

2.3. Explicit solutions in the case of dilute vorticity 

We consider here the particular case of dilute vorticity, defined by the condition 
e(x) 4 1 everywhere. We expect this to occur when the initial vorticity patch has a 
small area, for instance a very thin vorticity strip, and becomes strongly diluted 
among the surrounding irrotational fluid. In this case, the denominator in ( 5 )  is close 
to 1, and the resulting non-dimensional equation (7)  simplifies to 

The same equation is also obtained from Onsager's statistical theory of point 
vortices (Onsager 1949), when the vortex density is locally averaged, using the 
method of Montgomery & Joyce (1974). 

Equation (9) was studied in the nineteenth century (see references in Stuart 1967) 
and families of explicit solutions have been found by Liouville (1853). We first 
consider the case with no mean translation along the x-axis (B = 0) ,  that is 8 = 0 a t  

For h < 0 (i.e. /3 > 0) the solution of (9) was shown to be unique (see $2.2); it is thus 
x-independent, owing to the translational symmetry in x, and it has vorticity 
extrema a t  the boundaries y = &L. Therefore solutions with h < 0 are strongly 
controlled by the boundaries and are not appropriate for a free shear layer. We then 
restrict the analysis to h > 0. We easily check that the solutions of (9) which do not 
break the translational symmetry are then 

where q is a positive parameter related to A by 

This function of q is increasing for small q and decreasing for large q ,  with a maximum 
such that qL tanh (qL) = 1 (qL x 1.1997). Therefore there is no solution of (9) with 
translational symmetry beyond a critical value of A,  A, z 0.8785/L2. For A < A,, 
there are two solutions corresponding to the two roots of (11) .  The solution with 
small q has a widely spread vorticity, while the solution with large q corresponds to 
a narrow shear layer at y = 0. 

A less straightforward family of solutions of (9) has been studied by Stuart (1967) 
in the context of shear-layer instability (it is a particular case of Liouville's solutions) 
and is written in our notation 

-V28 = exp (he) .  (9) 

y =  +L. 

exp (Ad) = 2q2/[h cash' ( q y ) ] ,  (10) 

h = 2q2/[cosh2 (qL)]. (11) 

(12) 
2k2 C2-A2  = 1, 

exp(h8) = 
h(Ccosh(ky)+A c ~ s ( k x ) ) ~ '  C 2 1, kinteger' 

These solutions represent an x-periodic array of vortices. When the parameter A is 
varied this flow deforms continuously from a unidirectional shear ( A  = 0) to an array 
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FIQURE 1. Bifurcation diagram for the solutions of (7) in the dilute case p = 0. The stream function 
0 at (5, y) = ( x ,  0) is plotted versus h for the main branch (10) and the first bifurcated branch (12) 
with k = 1. The streamlines at the points indicated by the arrows are shown. The higher-order 
bifurcations (k 2 2) are very close to the A = 0 axis and are not represented. The bifurcated 
solutions correspond to the approximation of large width L. 

of point vortices (A infinite). These solutions correspond in fact to an infinite domain 
in the y-direction, but the impermeability boundary conditions at y = fL are nearly 
satisfied when the width L is sufficiently large. Indeed the slope of the streamlines at  
y = + L  is 

Alsin (kz)l 1 IfJ = Csinh (kL) ' sinh (kL) ' 
which becomes very small for large L. Then for large 1y1 

A6 x log (s) - 2 log cosh (ky) 

so that 6 vanishes at the boundaries y = fL if 
C = (B/A)h/cosh (kL) . 

We deduce from the condition C2 1 that the family of solutions (10) exists only for 
A < A, = 2k2/cosh2 (kL). Equality corresponds to (11) with q = k, so that family (12) 
joins the family (10) at the bifurcation point A, corresponding to q = k. These 
different solutions can be represented in a bifurcation diagram (figure 1) with the 
stream function 6 at (x, y) = (n,O) versus A. The main branch, corresponding to 

22 FLM 233 
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family (lo), starts at h = 0, goes through the turning point a t  h = A,, and goes back 
toward the axis h = 0. The parameter q is monotonically increasing along this path. 
We have only represented the first bifurcated branch, corresponding to  family (12) 
with k = 1. The higher successive bifurcated branches (k 2 2) would be much closer 
to the axis h = 0. Actually (12) gives only the upper part of the bifurcated branch, 
while the lower part corresponds to the same kind of solution, translated by a 
distance R along the x-axis. I n  fact, the family of bifurcated solutions should be 
represented by an ‘ umbrella ’ corresponding to all the possible phases in x, instead of 
only two lines. 

Solutions with B + 0 can be obtained by shifting the origin of y, replacing y by 
y-yo in (10) and ( 1 2 ) .  Therefore the influence of this parameter B is trivial, and we 
shall assume that R = 0 for simplicity. It can be shown as a general theorem (Gidas, 
Ni & Nirenberg 1979) that  the solution cannot break the y+  - y  symmetry (this is 
true for any positive second member in an equation of the type (7 )  or (9)). It can only 
break the translational symmetry along the x-direction. 

We need now to determine the states of maximum entropy among the different 
solutions of (9) with A > 0. This is a difficult task that we have performed only 
partially. We restrict the discussion to the main branch in the symmetric case 
B = 0. We first introduce solution (10) in (8) for the second variation and use (7 )  for 
the non-dimensional variables : 

where 

Now the majoration of the previous section becomes 

Since cosh2 (qy )  2 1 this expression is negative when q2L2 < in2.  Therefore the main 
branch corresponds to a maximum of entropy a t  least for qL < n/2/8. 

Choosing a particular perturbation, we show now that the main branch is not an 
entropy maximum beyond q = 1. Let us chose a perturbation SO = cos x/cosh y. This 
perturbation does not modify the total circulation and the energy at first order, as 
required. The expression for the second variation then becomes 1 ( cosh2 ( q y )  - 1 

S2J = - 2nh e ~ p ( - ~ ~ )  ) dy. 1 
q2 cosh2 y cosh4 y 

A numerical computation shows that, in the limit of large width L,  S2J is positive 
between q = 1 and q x 2.1, so that the critical point is not a local maximum of the 
entropy. In this sense, the velocity profiles with q between 1 and 2.1 are unstable with 
respect to the perturbation with wavenumber 1. For q > 2 ,  we can do the same 
calculation with a perturbation in cos (nz) (where n is an integer greater than l ) ,  and 
find a ‘ band of instability ’ for q between n and 2. in. Therefore the zonal flow is 
unstable for any q strictly greater than 1,  and a range of ‘unstable’ wavenumbers is 
found between n = q and n = q12.1. 

We can conjecture that the main branch is an entropy maximum below the 
bifurcation, for any q < 1 ,  but we were not able to prove it. Notice that a linear 
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stability analysis of the velocity profile (10) using Rayleigh’s equation yields a 
threshold of instability at  q = 1. Indeed, all the unstable modes have a wavenumber 
smaller than q (see for instance Drazin & Reid 1981), and if q < 1, those unstable 
modes are prohibited by the periodic boundary conditions. Therefore a change of 
stability at q = 1, according to the point of view of entropy maximum, would be 
quite in agreement with the linear stability analysis. 

By continuity the second bifurcated branch ( k  = 2) must inherit the property of 
instability of the main branch near q = 2. Since an instability already occurs at  a 
wavenumber 1, we have then an interpretation of the pairing mechanism in terms of 
entropy. Notice however that this second bifurcated branch could become stable far 
from the main branch. 

The Lagrange parameters a and /3 have to be determined from the initial conditions 
by writing the equality of the constants of the motion in the final equilibrium state 
and in the initial state. Therefore we need to calculate the circulation r, and kinetic 
energy E,  corresponding to (10) and (12). For simplicity we limit ourselves to the 
symmetric case B = 0, for which the momentum M vanishes : 

E, = aexp(-aa))2 

We now calculate r, and E, for the family (12). For large values of k L ,  the circulation 
is 

rl = a exp(-,,, 8x k / A .  

To calculate the energy, we integrate the contribution of each velocity component 
first along the x-direction, then along the y-direction (with Y = k y ) ,  taking the limit 
of large k L :  

i[Q(i3,B)2dx = Er( C cosh Y 
8 x k  

A2 -kL (C2 sinh2 Y+ 1)s 

8 x k  
dY x - (log C + kL - 1) .  

rL sinh2 Y cosh Y 
-kL (C2sinh2 Yf l ) ~  A2 

In the symmetric case M = 0, the final state depends in general on three parameters 
determined by the initial condition : the initial vorticity level a, the circulation r,, 
and the kinetic energy E,. The dilute case corresponds to the limit of very large a, 
keeping a finite circulation (so that the area of the initial vorticity patches tends to 
zero). Then the circulation rl can be considered as a scaling parameter that sets the 
typical velocity, while the non-dimensional ratio 

characterizes the flow structure. For the x-independent solution, this ratio becomes 

We notice that since k 2 1 and C 2 1 ,  d given by (14) is always greater than 
(L - 1)/8x. Therefore, if d is smaller than this threshold, we predict an x-independent 

22-2 
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final equilibrium state, with q given by (15) (which yields q < 1) .  For I > (L-  1)/8x 
we could have either an x-independent solution with q > 1,  or a bifurcated solution. 
However, we have shown that the former is not an entropy maximum, so that the 
equilibrium state must be then a bifurcated solution. It was argued that the 
bifurcated solutions with k > 1 are probably not entropy maxima, then the 
parameter C would be uniquely determined by (14) with k = 1. 

Consider the example of a very thin initial vorticity strip, nearly a vortex sheet. 
Suppose the velocity is equal to 1 on one side and - 1 on the other side of this sheet, 
so that the circulation is 47c. The kinetic energy is then equal to t multiplied by the 
domain area ~ x L ,  so that I = L / ~ x .  Therefore we predict a bifurcated final state with 
logC = 8. A wider strip would have lower energy, but then it would not lead to the 
dilute case, and our explicit solutions would not apply. A lower energy can be 
obtained with two vortex sheets a t  y positions y = + d  and - d .  Then the velocity is 
equal to - 1  for y < - d ,  0 for - d  < y < + d ,  and + I  for y > + d .  With the same 
circulation as a single vortex sheet, the energy will be now equal to 2n (L-d ), so 
that 8 = (L-d )/87c. Therefore, if d < 1 ,  bifurcated solutions with log C < + are 
obtained, and if d 2 1, an x-independent h a 1  flow is predicted. Solutions with 
log C 2 can be reached if the initial condition is of isolated vortices which contain 
more energy than vortex sheets. 

The different solutions can thus be obtained from realistic initial conditions. These 
results can be understood by the following heuristical argument. The initial vorticity 
tends to diffuse as much as possible into the surrounding irrotational fluid. However, 
such a mixing would tend to decrease the energy, and a final equilibrium state is 
reached after a limited diffusion. If the initial energy is high, the system ‘prefers’ to 
diffuse at some places, and makes up for the corresponding loss of energy by forming 
vortices with high energy. 

3. Vorticity mixing in a shear layer: a numerical test of the theory 
3.1. Numerical model 

The fluid motion is described by the NavierStokes equations written in terms of 
velocity and pressure - 

\ au 
- + ( u . V ) u  = -vp+uv2u, 
at 

v - u  = 0 I 
in the square domain S2 = ]0,2n[ x 3 - n, 7c[. We use periodic boundary conditions in 
the x-direction and free-slip conditions (&lay = 0 ,  v = 0) on the velocity a t  the 
boundaries y = f X .  The initial condition consists of a basic x-wise velocity field upon 
which a perturbation is added (see 53.3). The basic velocity field is equal to + 1 at 
y = + X  and - 1 a t  y = 7c. We define the Reynolds number as 1 /v .  

In order to ensure energy conservation, (16) was rewritten using the vector 
identity (U-V u = o x u + V (tl~1~). The spatial derivatives and nonlinear terms of the 
equations are then treated numerically using a pseudo-spectral method (see Gottlieb 
& Orszag 1977). The spatial derivatives are computed in Fourier space while the 
nonlinear terms are evaluated in physical space. The components of the velocity are 
expanded in truncated exponential Fourier series in x, thus satisfying the periodicity 
conditions. The free-slip boundary conditions are attained by expanding u in a 
truncated sine series in y and v in a truncated cosine series, therefore achieving a y -  
periodic condition with symmetry (in the double domain). The cutoff wavenumber 
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k,, is equal to n/dS, where ds is the grid size. (For the 256 ~ 2 5 7  resolution, with 
which all numerical simulations were carried out, k,, = 128). The aliasing errors 
due to the computation of the nonlinear terms in physical space are removed by the 
method outlined in Patterson & Orzag (1971). 

The divergence-free condition is imposed while solving the equation for the 
pressure field in Fourier space. We checked that the divergence of the velocity field 
always remains smaller than 

The time advancement scheme is a third-order Adams-Bashforth scheme. Finally, 
the viscous terms are computed explicitly, because the stability condition is imposed 
by the advective timescale (and not by the diffusive timescale) as soon as the 
Reynolds number is large enough. 

Choice of the numerical parameters 
(i) Spatial resolution : the highest spatial resolution is of course desirable in order 

to reach high Reynolds number and properly handle the initial vorticity 
discontinuity. We chose 2562 which allows to approach the inertial limit with 
reasonable computing time, in spite of the big number of iterations. 

in all of our numerical simulations. 

(ii) Time step: We have chosen dt = 0.005 for all the runs. 
(iii) Reynolds number: Since the typical velocity and width of the observed 

vortices are unity, Re = l / v  is the actual Reynolds number as mentioned above. We 
try the highest Reynolds compatible with our resolution. When this parameter is too 
high, the calculation is less accurate at small scales, as demonstrated by a set of tests 
described in $3.2. 

3.2. Rate of decay of the integral quantities 
We shall now consider the effect of viscosity on the constants of the motion of the 
Euler equation. Simple manipulations lead to the classical balance equation for the 
energy 

dE,= -,,r2. 
dt 

Since r2 (twice the enstrophy) always decays (see below), it is bounded by its initial 
value, so that the rate of energy dissipation vanishes in the limit of small viscosity 
v. The difference between the energy at  the end of the computation and its initial 
value is then a good indication of the influence of viscosity on the dynamics. 

The evolution equation for the total circulation is obtained by direct integration 
of the Laplacian term 

Since the vorticity vanishes at  the walls y = _+ L,  and is negative inside the domain, 
a,w must be negative at  y = -L  and positive at y = +L. Therefore r, can only 
decay in absolute value. However, the vorticity region generally does not reach the 
walls in our calculations, so that the circulation is virtually conserved. 

The equation for the other momenta r,, is obtained by part integration of the 
viscous term vn wn-l V2w 

(18) -- drn - -n(n-1)  v/Q(Vw)20'-2dx. 
dt 

Since the vorticity is everywhere of the same (negative) sign, it is clear from this 
relation that all the moments must decay in absolute value. Direct verification of 
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FIGURE 2. Successive snapshots of the vorticity field (6 = 0.215, Re = 1500). The contour 
interval is 0.3 for t = 0 to 20, and 0.2 for t = 60 and 180. 
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10 100 

FIQURE 3. Successive snapshots of the vorticity field (8  = 0.1075, Re = 1200). The contour 
interval is 0.6 for t = 0 and 2, 0.5 for t = 10, and 0.2 for t = 100. 

these relations for the dissipation rates provides an indication that the computation 
accurately represents the mixing process. Therefore we calculate for each run the 
relative errors 

where D ,  is the theoretical expression for the dissipation rate. The time derivatives 
are calculated from the numerical fields by a second-order scheme. 

The maximum of the vorticity field must always decrease, since it corresponds to 
a negative value of the Laplacian of w .  Similarly the minimum must increase. These 
properties provide very convenient tests of the calculation. 

3.3. Evolution of a single shear layer 
A typical flow evolution of the shear layer is represented in figure 2 by snapshots of 
the vorticity field. A chain of vortices first forms by shear instability, then a sequence 
of vortex merging occurs, and the flow slowly stabilizes into a final vortex structure, 
which very slowly diffuses by viscosity. We study the influence of the half-width 6 
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RQURE 4. Successive snapshots of the vorticity field (8 = 0.43, Re = 1500). The contour 
interval is 0.1. 

of the vorticity strip, and the Reynolds number Re, as summarized in table 1 below. 
We now consider in detail the initial condition and the successive phases of the 
evolution. 

3.3.1. Initial condition 
We are interested in the evolution of a strip of uniform vorticity surrounded by 

irrotational fluid. The strip is oriented along the x-direction and centred at y = 0. 
This is the classical configuration of a shear layer : the velocity is directed along the 
x-axis and uniform outside the vorticity strip, with a negative velocity in the lower 
part and a positive one in the upper part. Since the numerical code cannot deal with 
a discontinuous vorticity field, we approach such a uniform strip by a continuous 
vorticity field, defined as 

This function tends to a vorticity strip in the limit of large m, and has a Fourier 
spectrum with exponential decay at high wavenumbers, which is appropriate for 
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0.1075 0.215 0.215 
1200 750 1200 

3 3 3 
0.005 0.005 0.005 
0.489 0.478 0.478 

13 15.7 11.3 
56.2 64.7 

3.7 2.0 2.1 
24 8.6 9.2 
0.82 2.08 0.87 
2.64 2.31 3.33 

0.215 0.3225 0.43 
2000 1200 2000 

3 4 10 
0.005 0.005 0.0025 
0.478 0.467 0.455 
7.7 8.1 5.7 

2.1 1.2 1.3 
6.5 2.7 2.5 
0.25 0.87 0.05 
5.99 4.0 16 

71.8 

TABLE 1. The parameters of the main runs 

0.215 
1500 

3 
0.005 
0.478 
9.4 

68.2 
2.5 

12 
0.37 
5.0 

2 x 0.215 
1500 

3 
0.0025 
0.409 
5.9 

1.3 
2.7 
5.10 
2.0 

numerical differentiation. The main parameter that we vary is the half-width 6. The 
normalization factor, involving the gamma function r, is such that the integral of 
w (  y) is -2, in order to maintain for all cases the condition that u = + 1 at large 
positive y and u = - 1 at large negative y. The vorticity a at y = 0 is the inverse 
of this normalization factor (a is negative) and is uniform in most of the strip 

Such a flow is a steady solution of the Euler equations, but it is generally unstable. 
Adding explicitly a small perturbation allows the instability to be controlled and 
initiated more quickly, before a significant viscous diffusion of the vorticity profile 
can occur. We chose a perturbation with components in the Fourier modes 1 , 2 , 3  and 
4 with arbitrary phases. The perturbation is confined to the neighbourhood of the 
vorticity strip by an exponential factor in the y-coordinate. We have checked that, 
while the sequence of merging processes and the position of the final vortex depend 
on the phases and relative amplitude of the four modes, the structure of the final 
state does not vary significantly. We have then chosen to keep the same perturbation 
shape for comparing the different cases presented in this section, and it is obtained 
from the stream function: 

-s < y < +6. 

We use e = 0.005 or E = 0.0025 and 

3.3.2. The initial instability 
The first phase of the evolution is the formation of a chain of vortices as the result 

of the shear instability. The number of vortices that develop can be estimated by an 
inviscid linear stability analysis, using Rayleigh’s equation. For a strip with uniform 
vorticity, the growth rate of a wavenumber k starts from zero at k = 0, reaches a 

= in. 
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FIGURE 5.  The enstrophy decay for different Reynolds numbers with the same initial condition 
(6 = 0.215). 
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FIQURE 7. Evolution of the momentum thickness h :  (a) 6 = 0.2150, for Re = 750 (dashed) and 
Re = 2000 (solid). The global decay of the oscillations does not depend significantly on viscous 
effects. (b )  6 = 0.43, Re = 2000. 
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values of m, the results should be between these two cases. The periodic boundary 
conditions restrict the wavenumbers to integer values. Thus, for S = 0.215, the 
wavenumber k = 3 is about marginal, and k = 2 is the most amplified. We indeed 
observe (figure 2) a chain of three vortices, but two vortices quickly dominate. For 
S = 0.1075 the four vortices initially grow as expected (figure 3), while for 6 = 0.43, 
only the mode k = 1 can grow (figure 4). For 6 > 0.64 (and m large), the flow must 
be stable, since the first allowed mode k = 1 is already beyond the range of 
instability. We have indeed checked that for 6 = 0.645, the vortex strip is stable, and 
grows only by a slow viscous diffusion. 

3.3.3. Merging and relaxation toward the final vortex 
When several vortices form, they quickly undergo merging processes. Because of 

the initial perturbations, this merging occurs quickly and does not only involve pair 
interactions, but also more complex interactions. After this merging a single vortex 
slowly relaxes towards an equilibrium state. (The flow should rather be thought as 
a chain of vortices, in which any further merging is forbidden by the periodic 
boundary condition in x . )  The vortex then slowly diffuses, but on a much longer 
timescale. Since the vortex scale is about unity, this diffusive timescale is of the order 
of the Reynolds number, which is at least an order of magnitude longer than the time 
for inertial organization. Our purpose is to analyse this inertial equilibrium state and 
compare it with the prediction of the statistical theory. However it is also important 
to investigate the transient evolution to test the numerical computation and monitor 
the mixing process. 

We first observe that the total energy of the flow always slowly decays, as it 
should. The initial energy (divided by the domain area 479) is indicated for the 
different runs in table 1 at time t = 0 .  This initial energy is a little less than a, the limit 
for a vorticity sheet. The energy loss at  t = 100, defined as S,,, E = E(O)-E(100),  
indicates the influence of viscous effects. The ratio of this energy loss to the total 
initial energy is indicated in the table, and is typically lo%, which is reasonably 
small. The influence of the Reynolds number has been carefully investigated in the 
case S = 0.2150. We notice that the product of the energy loss and the Reynolds 
number apparently tends to a constant as Re is increased. This means, from (17), that 
the enstrophy must become independent of the Reynolds number. We check in figure 
5 that the enstrophy evolution is indeed very close for Re = 1500 and Re = 2000, 
confirming that we are reaching the inertial limit. 

As a test of the computation, we have directly checked (17) and (18) for the 
dissipation rates of the integral quantities, by plotting the evolution of the errors A,, 
A ,  and Arlo defined in $3.2. The relative error A ,  is always smaller than The 
errors A ,  and Arlo oscillate around 0 and their maximum excursion is indicated in the 
table. The precision on the enstrophy dissipation term is a few percents. The 
precision on the higher vorticity moment is somewhat less good especially for a 
narrow initial vorticity strip. Surprisingly, these errors do not increase with Re, so 
they cannot be used as a test for the choice of the optimum Reynolds number. 

As mentioned in $3.2, the maximum of the vorticity field must decay while the 
minimum must grow in the mixing process. These two quantities are plotted on 
figure 6 for different Re (6 = 0.2150). The minimum is not exactly zero because of the 
small initial perturbation. For Re = 2000, these quantities fluctuate slightly in the 
initial phase of the evolution. This spurious behaviour reveals that the Re is slightly 
too high for a precise computation of the viscous term. (However, the evolution of 
the global quantities, as represented on figures 5 and 7, is still probably fairly 

' 
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0 

log(w/a) - 1  

3 , 2  1 0 -* 
FIGURE 8. Scatterplot of vorticity versus stream function, with different representations (at t = 
100) : curve 1, 6 = 0.1075; 2, 8 = 0.215; 3, S = 0.43. (a) Linear coordinates w l a  and $, (a) log wla 
versus $. 
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-* 

3 2 1 

-* 
FIQURE 9 (u,  b). For caption see facing page. 

accurate a t  Re = 2000.) By contrast, the fluctuations are virtually absent for Re 
below 1500. This appears to  be a very accurate test of the computation, probably 
because it probes locally the regions with high excitation. We can conclude that 
computations with Re < 1500 are quite reliable for a precise study of vorticity 
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3 2 1 -+ 
FIGURE 9. Scatterplot of log ( w / a - o ) )  versus stream function 1/. at different times in the 
equilibrium regime for 8 = 0.215: (a) t = 60, the fitted parameters are p = 1.2 x and C = 5.96; 
( b )  t = 100, fitting p = 3.7 x and C = 2.35. (To 
reduce the size of the figures, we have removed the points with a stream function between 0 and 
- 1 ,  where the vorticity is virtually zero.) 

and C = 5.0; (c) t = 180, fitting ,u = 19.9 x 

structures. This test is used to find the optimal Reynolds number for the other initial 
conditions. 

The mixing process is classically characterized by the evolution of the momentum 
thickness, defined in our case by 

+L 

h = q, (1  - ( u ) )  (1 + ( u ) )  dy, 

which indicates the width of the region where the x-averaged velocity ( u ) ( y )  
significantly departs from the values 1 or - 1  in the far distance. Notice that the 
kinetic energy of the x-averaged velocity is equal to  i-2h. The momentum thickness 
(figure 7) increases owing to the growth of the shear instability and merging, then 
undergoes a series of damped oscillations until the steady regime with slow viscous 
diffusion is reached. The damping time of the oscillations depends on the initial 
condition as shown on the two examples of figure 7. It is important to notice that the 
damping and the relaxation to an equilibrium state are controlled by inertial effects, 
not by viscosity: indeed the rate of damping seems very similar a t  Re = 750 and 
Re = 2000 (for 6 = 0.2150). However, a precise characterization of this damping is 
not easy since several periods of oscillation coexist. 

3.4. The final state of a single shear layer 
We study the final state by representing each point of the computation grid on a 
scatterplot with abscissa @ and ordinate w .  For a steady solution of the Euler 
equation, all these points must collapse on a curve, or a set of curves. In  our case, we 
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- 1  
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-* 
FIGURE 10 (a, b ) .  For caption see facing page. 

obtain a family of closed streamlines in the vortex, and a family of 'open ' streamlines 
outside it (in fact they are closed by the periodic boundary condition). On each side 
of the shear layer there are two open streamlines for a given value of the stream 
function ; therefore the relation w = f (9) can have two branches in this region. 
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1 

FIQURE 10. Equilibrium structures at t = 100 for different Reynolds numbers (8 = 0.215): 
l og (w/a -w) )  versus *. (a)  Re = 750, ( b )  Re = 1200, ( c )  Re = 2000. 

Scatterplots at  time t = 100 are given in figure 8 for different initial conditions. 
Since the points nearly collapse onto curves, the system is indeed very close to a 
steady Euler flow. The upperpart of the curve corresponds to the closed streamlines 
inside the vortex, while the low part represents the open streamlines in the outer 
region with low vorticity. The curves behave as predicted by (7): an hyperbolic 
tangent with asymptotes at w = 0 and a. Of course the curve is limited to the interval 
of variation of w ,  so that the saturation at w = a appears only for an initial condition 
with a wide strip. For a narrow initial strip we keep only the lower part of the tanh 
function, which is close to an exponential (curve 1 of figure 8 b ) ,  as expected in the 
dilute case, or with Oneager’s theory. 

A quantitative test of the theory is performed by plotting log (@/(a - w ) )  versus @, 
which must be a straight line according to (7). The agreement is indeed excellent 
inside the vortex, as shown in figure 9(6 = 0.215, Re = 1500). The curve first 
oscillates around a straight line, and then clearly tends to this linear relationship. 
Notice that a is taken as the extremum vorticity of the initial state (a = 

- 1/6r(1 +$n)), so there is no adjustable parameter in this representation. Outside 
the vortex we find a region of fairly uniform low vorticity, and still further the 
vorticity drops down very steeply. The mixing process has not reached this outer 
region. 

We have checked that this behaviour is very similar at Re = 1200 (figure 10). At 
Re = 750, the agreement with theory becomes less good,. which is not surprising since 
results on the enstrophy indicate that we are still far from the inertial limit. At 
Re = 2000 the agreement is still good except for a cusp at the vortex centre. 
However, the vortex did not quite reach a steady state, and the calculation is not as 
good in this case (the vorticity extrema fluctuate). 

The agreement with theory is confirmed with a narrower initial strip (figure 11). 
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-* 

-* 
FIGURE 11 .  Equilibrium structures for different initial layer thicknesses : 

l og (w/ (a -w) )  versus $. ( a )  6 = 0.1075, ( b )  6+0.43. 
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FIUURE 12. Successive snapshots of the vorticity field showing the evolution of 
a double shear layer. 
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FIGURE 13. Equilibrium structure of the double shear layer at t = 100: (a)  w / a  versus +, 
( b )  l og (w/a -w) )  versus $. 
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For a wide strip we still obtain a good agreement between w/a = 0.1 and w/a = 0.8, 
where strong vorticity mixing has occurred. However, we observe that the vorticity 
in the central region of the vortex remains too high : it does not mix sufficiently with 
the surrounding. Notice that the discrepancy with theory is exaggerated when we 
divide by the small quantity w-a : even in this central region of the vortex, the curve 
still behaves qualitatively like an hyperbolic tangent, as seen on curve 3 of figure 

The parameters h and ,u in (7) can be deduced from the straight line fitting. In table 
1 we give ,u and C, deduced from h by (13) (with k = 1 and L = n). The parameter 
C has a clear meaning only in the dilute case, as it appears in (12). Then we obtain 
values much higher than the ei x 1.65 predicted in $2.3. This discrepancy is not 
surprising since (7) is only satisfied in the vortex region, not in the whole domain. We 
observe that C slowly decreases with time as the vortex diffuses (figure 9), and it may 
tend to the theoretical value in the limit of very long time. 

8 (a).  

3.5. The case of a double shear layer 
We have predicted in $2.3 that weaker vortices (corresponding to logC < a), or even 
x-independent flows, should be obtained as the final state of a double initial shear 
layer. This initial condition corresponds to two thin vorticity strips centred at y = 
-d  and + d ,  with vorticity level a = -9 and thickness 28 for each, such that the 
lower and upper velocities are still - 1 and + 1. In practice, we add two smoothed 
strips with 6 = 0.215, and a perturbation (19) centred on each strip, with = in in 
the lower layer and in in the upper one, to avoid complete symmetry. 

The evolution is illustrated in the case d = i by the snapshots of figure 12. Each of 
the two shear layers first undergoes independent instability and merging. Then 
merging between the two layers occurs, leading to very complex mixing. We find that 
the h a 1  state is in agreement with theory (figure 13) in regions with vorticity higher 
than 0.0%. As for a single shear layer, the mixing has not reached the whole domain. 
The parameter C (see table 1) is lower than in the runs with a single shear layer, as 
it should be, but it is still higher than the predicted value. 

We have tried a similar calculation with d = 1, for which an x-independent final 
state was conjectured in $2.3. However, we have obsyved that each layer then 
develops fairly independently, and produces its final vortkx. The interaction between 
these two vortices produces an x-wise steady translating motion of each vortex in 
opposite directions. Deformation of these vortices occurs when they pass each other, 
but it is not sufficient to produce merging, and the system does not converge to a 
steady state. Similar behaviour was obtained with a quadruple shear layer. Therefore 
it seems unlikely that an r-independent final state can be obtained, at least in a 
reasonable time. The system tends to achieve local equilibria into vortices faster than 
the global equilibrium. Notice also that we have only proved that the r-independent 
state is a critical point, not necessarily an entropy maximum beyond qL = ;&. Since 
the expected x-independent state would correspond to a much larger value of q (close 
to 1), there may be no equilibrium state for the corresponding range of initial 
conditions. 

4. Conclusions 
In  the case of an initial condition with two vorticity levels a and 0, the statistical 

theory predicts that, after complex mixing, the flow should tend to a steady state, 
characterized by the simple relationship (6) between vorticity and stream function. 
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We observe in the numerical computations that the flow tends to a steady state and 
the relationship between w and $ is in excellent agreement with theory in the regions 
where significant mixing between the two initial vorticity levels occur. Mixing occurs 
in a confined domain, so that the boundaries are important. However, in the cases 
that we consider here, the equilibrium vorticity distribution drops before reaching 
the walls y = + L ,  and the confinement is mostly due to the periodic boundary 
conditions in the x-direction. This would not be the case in a domain with a small 
aspect ratio. 

We observe in the simulations that the mixing process does not cover the whole 
fluid domain. Far distant regions remain virtually irrotational, and if the initial 
vorticity strip is wide, a region of unmixed fluid, with nearly maximal vorticity, 
remains at the vortex centre. In these regions (6), fitted in the mixed part of the flow, 
is poorly satisfied. To allow a relevant comparison with theory, thin vorticity 
tongues must develop and be stirred in a complex way. Viscosity must smooth the 
vorticity only a t  the end of this process. With a moderate Reynolds number, this 
condition is achieved only in the regions of the flow with the most active stirring. It 
is therefore not surprising that the theory is less good in regions with nearly pure 
vorticity levels w = 0 or a. Formation of a local equilibrium in a fluid bubble is also 
observed at higher Re in laboratory realizations of isolated vortex structures, as in 
Nguyen Duc & Sommeria (1988). 

The good agreement in the case of a double shear layer with d = t confirms that the 
theory has a wide domain of validity. However, when the distance between the two 
strips is too large, we tend to get a vortex in each layer rather than the expected x- 
independent flow. Notice also that the x-independent flow was not proved to be a 
maximum entropy state in this case. 

We must keep in mind that in our tests, we try to connect a statistical property 
of perfect fluids with the behaviour of simulated viscous fluids. Of course a complete 
agreement is conceivable only in the limit of high Re and very long times. Attempts 
to reach conditions of higher effective Reynolds numbers by replacing the Laplacian 
by a biharmonic viscosity did not lead to a good quantitative agreement with theory, 
although the general flow evolution is not strongly affected by this modification. 
Indeed the biharmonic term does not smooth out the local vorticity fluctuations : 
rather, it  would smooth out the vorticity gradients. In  particular the maximum and 
minimum of the vorticity field did not decay monotonically as they should. Therefore 
much care is required for quantitative tests of the theory. 

A predictive use of the theory requires the resolution of (7),  which must be done 
generally by numerical methods (but the spatial resolution does not need to be as 
high as in a direct numerical simulation a t  large Re).  In  the particular case of dilute 
vorticity, we meet Onsager’s statistical theory of point vortices, with local averaging. 
Equation (7) is then solved explicitly, in the limit of a wide domain. We notice that 
the family of Stuart vortices is indeed a solution of the problem, which does not seem 
to have been noticed previously. 

The theory relies on the local conservation of the vorticity w and is therefore limited 
to two-dimensional flows. However, it is striking to notice that Stuart’s vortices are 
often considered as a good representation of the organized structures which appear 
in ordinary turbulent shear layers (with three-dimensional eddies). This remark leads 
to a possible interpretation of these organized structures: they would be by far the 
most probable states in a strongly stirred flow : successive merging would correspond 
to successive stabilization in metastable states with higher and higher entropy. We 
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then conjecture that these organized structures could be states of statistical 
equilibrium rather than dissipative structures. 

The computations have been performed on the GRAY2 of the CCVR (Centre de 
Calcul Vectoriel pour la Recherche) a t  Palaiseau. Computation time has been 
allocated by the Scientific Committee of the CCVR. An initial study of these 
organized structures was performed as one of us (J.S.) was visiting P. Rhines a t  
Seattle, with the support of NSF Grant OCE-89-16009, and J.S. wishes to thank him 
for his encouragement. 
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